Плазменная дуга — преобразователь электрической энергии в тепловую. Поэтому с одной стороны, как элемент электрической цепи, она характеризуется электрическими параметрами (током, напряжением), а с другой стороны, как источник тепла,- тепловыми параметрами (температурой, теплосодержанием). Существует сложная взаимосвязь между параметрами первой и второй группы. Структурно плазменную дугу постоянного тока можно представить в виде ряда характерных участков, последовательно расположенных вдоль ее оси. Плазменная дуга, к примеру, прямого действия (см. рис.) состоит из катодной области (1), досоплового (2), внутрисоплового (3) и засоплового(4) участков столба и анодной области(5), расположенной практически на обрабатываемом изделии. Обозначим их u1 — u5 соответственно. Соответственно напряжение дуги является суммой падений напряжения на этих участках.
Uд = U1 + U2 + U3 + U4 + U5
Подобным образом рассчитывается напряжение дуги косвенного действия, за исключением того, что анодная область не входит в сумму падений напряжений. На внутрисопловом участке столб представляет собой цилиндрический электропроводный канал, при том за срезом сопла по мере удаления от него электропроводный диаметр столба увеличивается и на изделии достигает величины, а температура и скорость течения плазменной струи уменьшаются.
На внутрисопловом участке столб представляет собой цилиндрический электропроводный канал, при том за срезом сопла по мере удаления от него электропроводный диаметр столба увеличивается и на изделии достигает величины, а температура и скорость течения плазменной струи уменьшаются. Обычно сумма катодного и анодного падений напряжения составляют малую долю общего напряжения плазменной дуги. В зависимости от тока и степени сжатия дуги в плазмотронах с вольфрамовым катодом величина и1 изменяется в пределах 5-8 В, а с циркониевым катодом в пределах 10-12 В. Величина U5 практически мало зависит от материала анода, плазмообразующей среды, тока и составляет 5-6 В. Таким образом, напряжение плазменной дуги определяется в основном напряженностью поля и длиной участков, составляющих столб дуги. Падения напряжений на участках(2) и (3) приблизительно одинаковы (при равной длине)Энтальпия плазменной дуги
Важным тепловым параметром плазменной струи является ее удельное теплосодержание (энтальпия), т. е. количество тепла, содержащееся в единице объема или массы струи.
I = СТ дж/г
где С — удельная теплоемкость газа при температуре Т, дж/г. °К. На рис. 2 приведены зависимости теплосодержания ряда газов от температуры при атмосферном давлении, из которых видно, что теплосодержание молекулярных газов при относительно низких температурах ((4-8) * 103 °К) за счет поглощения энергии, выделяющейся в процессе диссоциации молекул, достигает высоких значений и превышает почти на порядок теплосодержание одноатомных газов. Следующий порог резкого повышения теплосодержания плазмы наступает при температуре ее около 12-103 °К за счет поглощения энергии, выделяющейся при ионизации атомов.
Использование высокоэнтальпийных молекулярных плазмообразующих газов в энергетическом отношении более выгодно, так как они при более низких температурах обладают той же тепловой эффективностью, что и одноатомные газы. При этом уменьшаются потери тепла на излучение в стенки плазмотрона и в окружающую среду (эти потери пропорциональны четвертой степени температуры). Чем выше теплосодержание плазмообразующего (рабочего) газа, тем большую мощность требуется передать единице длины столба дуги, тем выше, следовательно, при данном токе напряженность поля столба Е. Таким образом, напряженность поля столба, а значит, и напряжение плазменной дуги в первую очередь определяются составом плазмообразующего (рабочего) газа.
Вольтамперные характеристики плазмотронов
Влияние состава рабочего газа на напряжение дуги наглядно иллюстрируется вольтамперными характеристиками плазмотронов. представляющими собой зависимость между напряжением и током дуги при прочих равных условиях (длине дуги, расходе газа, параметрах плазмотрона, внешних условиях). В области малых токов вольт-амперные характеристики плазмотронов падающие, а с увеличением величины тока переходят в независимые и возрастающие. При неизменном составе газа напряженность всех участков столба плазменной дуги увеличивается при увеличении степени его сжатия. Степень сжатия столба дуги растет (до определенного предела) при уменьшении диаметра формирующего сопла и увеличении расхода рабочего газа. Как показывают исследования, основная масса газа проходит по периферийным областям столба и по мере увеличения расхода все интенсивнее охлаждает и сжимает столб. Чем интенсивнее обжата дуга, тем при меньшем значении тока ее вольт-амперная характеристика переходит в возрастающую. Таким образом, напряжение плазменной дуги зависит от конструктивных размеров плазмотрона (dсопла, lсопла ) от тока дуги, состава и расхода рабочего газа и, наконец, от величины расстояния от торца плазмотрона до обрабатываемого изделия (l5). Для определения области рабочих напряжений плазмотрона данного вида строят семейство вольт-амперных характеристик, каждая из которых снимается при неизменных составе и расходе газа Q, длине l5 и неизменных конструктивных размерах плазмотрона. Иногда также строят внешние характеристики плазменной дуги: Ud=f(Q) и Ud=f(l5 ) при Iд= const. Эти характеристики возрастающие. Их можно аппроксимировать в линейные и использовать при создании систем автоматического регулирования процесса сварки по напряжению дуги.